

www.pragatipublication.com

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Etab-Based Seismic Investigation of a Planned Irregular Multistory Commercial Building

Mr. C. Jegadeeswaran, Mr. A. Ramkumar, Ms. S. Hemalatha, Mr. A. Venkateshan, Dr. T. K. Gopinathan

Assistant Professor 1,2,3,4 Professor 5

cjegadeseswaran@actechnology.in, ramkumar.a@actechnology.in, hemalatha.s@actechnology.in,

venkateshan.k@actechnology.in, gopinathan.tk@actechnology.in

Department of CIVIL, Arjun College of Technology, Thamaraikulam, Coimbatore-Pollachi Highway, Coimbatore,

Tamilnadu-642 120

Abstract— This is an effort to study the consequences of an irregular plan arrangement for a reinforced concrete building model with several stories. The crux of this research is an irregular multi-story structure (G+25) in terms of both its layout and its elevation. Analysed using the ETABS v13.2.0 software is a 25story R.C.C. framed structure. Maximum base reactions, overturning moments, base shear, storey drift, maximum storey displacement, and torsional stress are calculated and compared for the examples that were Analysing and designing multi-story buildings is the speciality of ETABS, an engineering software application. Extensive Threedimensional Analysis of Building Systems is abbreviated as ETABS. You may use ETABS to test both simple and complex systems in static or dynamic environments. Included are the capacities of concrete and masonry shear walls, steel joists, composite beams and columns, steel connectors and base plates, and the optimisation of steel and concrete frames. Whether they are creating a one-story industrial structure or the highest commercial high-rises, ETABS offers Structural Engineers an unparalleled set of tools.

Key words: ETABS, G+25, R.C.C

I. INTRODUCTION

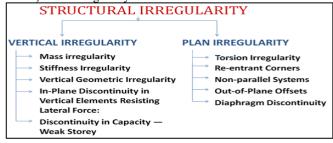
Earthquakes are the most undesirable and distressing of all natural calamities. From this, it is very difficult to save the structural properties and life. To overcome these concerns, we need to find the seismic performance of the built environment by developing various analytical procedures, which safeguard the structures to withstand during numerous minor earthquakes and also provide enough caution at the time of major earthquake. The behavior of a building during an earthquake depends on several factors such as stiffness, adequate lateral strength, ductility, configuration etc... During an earthquake, buildings with regular geometry and uniformly distributed mass and stiffness in plan as well as in elevation suffer much less damage compared to irregular configurations. But in present days, need and demand of the latest generation according to growing population has made the architects or engineers inescapable towards planning of irregular configurations.

II. OBJECTIVE OF THE STUDY

To obtain the Seismic performance of an irregular building located in various earthquake zones and in different types of soils of India.

III. SCOPE OF THE STUDY

The Present work is focused on the study of Seismic demands of an irregular R.C building for various seismic zones and different types of soils in India. The configuration


involves plan irregularities such as diaphragm discontinuity, reentrant corners and vertical irregularities such as geometrical irregularity, buildings resting on sloping ground. The performance was studied in terms of time period, base shear, lateral displacements, storey drifts and eccentricity in linear analysis using the code – IS1893 (Part 1):2002. The entire modelling, analysis and design was carried out by using ETABS 13.2.0 version software.

IV. IRREGULARITY

The system of components of the building, which are able to resist the seismic forces, is known as lateral force resisting system (L.F.R.S). They are of different types. The most familiar forms of these systems used in a structure are special moment resisting frames (SMRF), shear walls and frame-shear wall dual systems. Generally, the damage in a structure initiates at a location where the weak planes are present in the building systems. These weaknesses activate further structural deteriorations, which leads to the structural collapse. These weaknesses often occur due to the presence of structural irregularities in stiffness, strength and mass in a building system.

As per IS 1893:2002(part I), the structural irregularity can be broadly classified as,

- 1) Vertical irregularity and
- 2) Plan irregularity

(a) Classification of Structural Irregularity
Here, we just focus on Plan irregularity and study
the structural behavior of the structure with irregular Plan
configuration.

V. MODELING OF THE BUILDING

In this study, entire analysis for all the 3D models has been done using ETABS 13.2.0 version software. The results are tabulated in order to focus the parameters such as Lateral Displacement, Base shear, Storey drift, Torsion and Base reactions acting on the building. Here, the entire analysis process is carried out by linear analysis.

Page | 19

Index in Cosmos

March 2022, Volume 12, ISSUE 1

www.pragatipublication.com

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

In this study a Commercial building of 25 storey having different plan configurations at different levels (i.e. storeys 1-10, storeys 11-17, storeys 18-25) of the structure which is further analysed in different zones and different soil types (as per IS 1893 (Part I): 2002). Here, the structure in different zones and different soils is consider to study the effect of lateral deflection, storey drifts, bending moment, shear force and axial force caused due to lateral load (i.e. due to quake load).

VI. BUILDING PARAMETERS

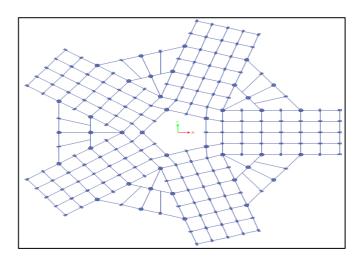
The building has irregular plan configuration. A floor to floor height of 3.0m is assumed. The location of the building is assumed to be at different zones and different type of soils. An elevation and plan view of a typical structure is shown in fig. 2.1 (a) and 2.1 (b).

Size of Structural Members:

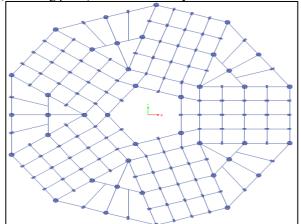
- A. Column Size:
- 1) Rectangular Columns:
 - C 610mm x 915mm
 - C 700mm x 1100mm
 - C 800mm x 1250mm
- 2) Circular Columns:
 - C 1220mm dia
 - C 1300mm dia
 - C 1350mm dia
- B. Beam Size:
 - B 460mm x 610mm
 - B 460mm x 760mm
 - B 540mm x 760mm
 - B 610mm x 950mm
 - B 610mm x 1200mm
 - B 650mm x 950mm
 - B 850mm x 1200mm
- C. Slab Thickness: 115 mm
- D. Grade of Concrete: M40
- E. Grade of Steel:
- 1) For Beams:
 - Longitudinal Reinforcement: Fe500
 Shear Reinforcement : Fe250
- 2) For Columns:
 - Longitudinal Reinforcement: Fe550
 - Shear Reinforcement : Fe415

F. In this, all the Analyses has been carried out using Dynamic analysis procedure as per IS 1893-2002.

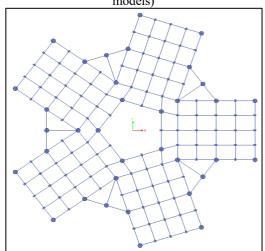
VII. PLAN AND ELEVATION OF MODEL


Plans of the model considered with 3 different plan configurations along the height of the building (i.e. storeys 1-10, storeys 11-17, storeys 18-25) is shown below.

Page | 20

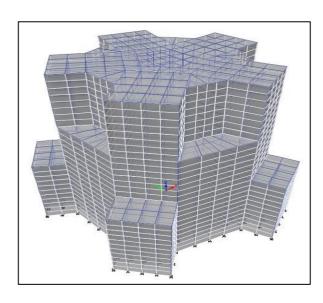

Index in Cosmos

March 2022, Volume 12, ISSUE 1


UGC Approved Journal

(b) Building plan (Common to storeys 1 to 10 of all models)

(c) Building plan (Common to storeys 11 to 17 of all models)


(d) Building plan (Common to storeys 18 to 25 of all models)

www.pragatipublication.com

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

- 1.2(DL + LL - Wx)

$$-$$
 1.2(DL + LL + Wy)

$$-$$
 1.2(DL + LL – Wy)

B. Dynamic Load Combination:

$$- 1.2(DL + LL + Sx)$$

$$-$$
 1.2(DL + LL + Sy)

$$- 1.2(DL + Sx)$$

$$-1.2(DL + Sy)$$

$$- 1.2(DL + LL + Ex)$$

$$-$$
 1.2(DL + LL – Ex)

$$-$$
 1.2(DL + LL + Ey)

$$- 1.2(DL + LL - Ey)$$

$$-$$
 1.2(DL + LL + Wx)

(d) 3D view of G+25Storey Building

VIII. MODEL DATA

The design data shall be as follows:

A. Live load:

- 3kN/m2 at typical floor
- 1.5 kN/m2on terrace

B. Wall load:

Exterior walls : 12kN/m
 Interior walls : 6kN/m
 Parapet wall : 6kN/m

C. Wind Load:

As per IS: 875(Part 3)-1987

D. Earthquake Load:

As per IS-1893 (Part 1) - 2002

E. Type of Soil:

Checked for all the 3 Types as per IS: 1893(Part 1) – 2002

F. Storey Height:

- Typical floor: 3 m,

- Ground floor: 3m

G. Floors:

G.F. + 25 upper floors.

IX. LOAD COMBINATIONS

Here, we have two types of Load Combinations for the analysis of the structure. Namely,

A. Static Load Combination:

Page | 21

Index in Cosmos

March 2022, Volume 12, ISSUE 1

UGC Approved Journal

www.pragatipublication.com

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

X. RESULTS AND DISCUSSION

In the present study, seismic response of high rise building (G+25) with irregular plan configuration at different levels using ETABS v13.2.0 under loading has been carried out. The objective of this study is to see the variation of load- displacement graph and check the maximum base shear and displacement of the. Following are the graphs drawn for the irregular G+25 storey building using ETABS.

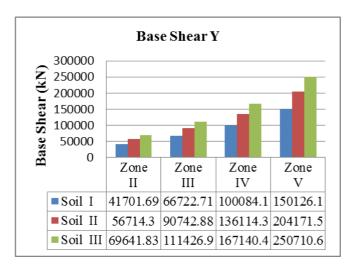
A. Torsion:

Story	Load Case/Combo	T (kN-m)	Location
Plinth	1.2(DL+LL+Ex) Max	198364.2	z2 s1
Plinth	1.2(DL+LL+Ex) Max	269775.3	z2 s2
Plinth	1.2(DL+LL+Ex) Max	331268.2	z2 s3
Plinth	1.2(DL+LL+Ex) Max	317382.7	z3 s1
Plinth	1.2(DL+LL+Ex) Max	431640.4	z3 s2
Plinth	1.2(DL+LL+Ex) Max	530029.1	z3 s3
Plinth	1.2(DL+LL+Ex) Max	476074	z4 s1
Plinth	1.2(DL+LL+Ex) Max	647460.7	z4 s2
Plinth	1.2(DL+LL+Ex) Max	795043.6	z4 s3
Plinth	1.2(DL+LL+Ex) Max	714111	z5 s1
Plinth	1.2(DL+LL+Ex) Max	971191	z5 s2
Plinth	1.2(DL+LL+Ex) Max	1192565	z5 s3

B. Base Shear:

Base Shear values for different zones and different soils for the load case Ex 3 along X-axis and Ey 3 along Y-axis respectively.

Page | 22

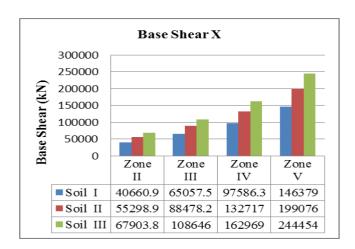

Index in Cosmos

March 2022, Volume 12, ISSUE 1

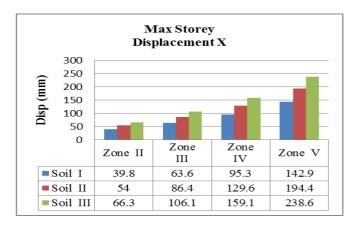
UGC Approved Journal

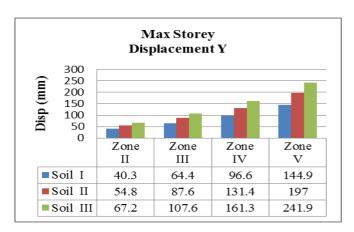
C. Storey Displacement:

Maximum Storey displacement values for the load case


www.pragatipublication.com

ISSN 2249-3352 (P) 2278-0505 (E)


Cosmos Impact Factor-5.86


Storey	Shear X	Shear Y	Location
Plinth	40660.9449	41701.69	z2 s1
Plinth	55298.885	56714.3	z2 s2
Plinth	67903.778	69641.83	z2 s3
Plinth	65057.5118	66722.71	z3 s1
Plinth	88478.2161	90742.88	z3 s2
Plinth	108646.0447	111426.9	z3 s3
Plinth	97586.2677	100084.1	z4 s1
Plinth	132717.3241	136114.3	z4 s2
Plinth	162969.0671	167140.4	z4 s3
Plinth	146379.4016	150126.1	z5 s1
Plinth	199075.9862	204171.5	z5 s2
Plinth	244453.6006	250710.6	z5 s3

Story25	40.3	39.8	z2 s1
Story25	54.8	54	z2 s2
Story25	67.2	66.3	z2 s3
Story25	64.4	63.6	z3 s1
Story25	87.6	86.4	z3 s2
Story25	107.6	106.1	z3 s3
Story25	96.6	95.3	z4 s1
Story25	131.4	129.6	z4 s2
Story25	161.3	159.1	z4 s3
Story25	144.9	142.9	z5 s1
Story25	197	194.4	z5 s2
Story25	241.9	238.6	z5 s3

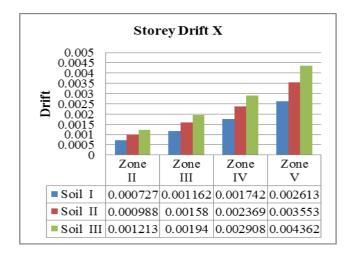
1.2(DL+LL+Ex)Max along X-direction and for 1.2(DL+LL+Ey) Max along Y-direction for different zones and different soils.

D. Max. Storey Drift:

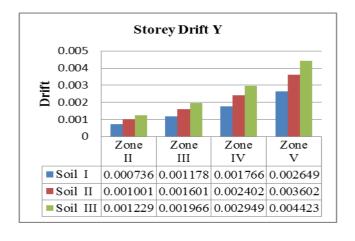
Maximum Storey Drift values for different zones and different soils for the load case 1.2(DL+LL+Ex) Max along X-direction and for 1.2(DL+LL+Ey) along Y-direction.

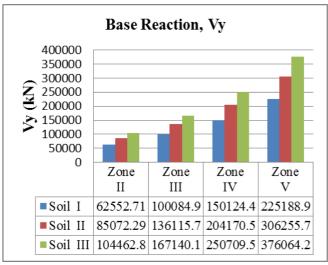
Index in Cosmos

www.pragatipublication.com


ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86


Storey	Storey Max Disp X (mm)		Y Locatin
G: 10	0.001162	0.00110	2 1
Story19	0.001162	0.00118	z3 s1
Story19	0.00158	0.0016	z3 s2
Story19	0.00194	0.00197	z3 s3
Story19	0.001742	0.00177	z4 s1
Story19	0.002369	0.0024	z4 s2
Story19	0.002908	0.00295	z4 s3
Story19	0.002613	0.00265	z5 s1
Story19	0.003553	0.0036	z5 s2
Story19	0.004362	0.00442	z5 s3


Plinth	149937.35	150124.4	z4 s1
Plinth	203915.58	204170.5	z4 s2
Plinth	250400.53	250709.5	z4 s3
Plinth	224908.24	225188.9	z5 s1
Plinth	305873.38	306255.7	z5 s2
Plinth	375600.79	376064.2	z5 s3

Storey	Drift X	Drift Y	Location
Story19	0.000727	0.00074	z2 s1
Story19	0.000988	0.001	z2 s2
Story19	0.001213	0.00123	z2 s3

Page | 24

Index in Cosmos

www.pragatipublication.com

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

E. Max. Base Reactions:

Max Base reactions values along X axes and Y axes for the load case 1.5(DL+Sy) Max for different Zones and different Soils.

Storey	Vx (kN)	Vy (kN)	Location
Plinth	62474.765	62552.71	z2 s1
Plinth	84966.081	85072.29	z2 s2
Plinth	104334.05	104462.8	z2 s3
Plinth	99960.209	100084.9	z3 s1
Plinth	135945.73	136115.7	z3 s2
Plinth	166934.18	167140.1	z3 s3

XI. COMPARISON OF DIFFERENT ZONES IN SAME TYPE OF SOIL (SAY TYPE III (SOFT) SOIL)

A. Max. Storey Displacement:

Max. storey displacement values along X-direction for Load case 1.2(DL+LL+Ex) Max

Story	Zone 5	Zone 4	Zone 3	Zone 2
Plinth	0	0	0	0
Story1	12.3	8.2	5.5	3.4
Story2	21.2	14.1	9.4	5.9
Story3	30.4	20.3	13.5	8.4
Story4	39.8	26.5	17.7	11
Story5	49.2	32.8	21.9	13.7

www.pragatipublication.com

	Story6	58.6	39.1	26.1 IS	SN 2 44 933352	(P) 2278-050	05 (E)		
-	Story7	68	45.4	30.2	osmos Jmp	act Factor-5	5.86		
	Story8	77.4	51.6	34.4	21.5	Story9	0.000845	0.001352	0.002028
	Story9	86.6	57.8	38.5	24.1	Story10	0.000844	0.001351	0.002027
	Story10	95.9	63.9	42.6	26.6	Story11	0.00098	0.001568	0.002351
	Story11	103.5	69	46	28.8	Story12	0.001017	0.001627	0.00244
	Story12	114.6	76.4	50.9	31.8	Story13	0.000999	0.001597	0.002395
	Story13	125.5	83.7	55.8	34.9	Story14	0.000963	0.00154	0.00231
	Story14	136	90.7	60.5	37.8	Story15	0.00092	0.001471	0.002205
	Story15	146	97.4	64.9	40.6	Story16	0.000875	0.001399	0.002098
	Story16	155.6	103.7	69.2	43.2	Story17	0.000855	0.001368	0.002051
	Story17	164.9	110	73.3	45.8	Story18	0.00109	0.001744	0.002615
	Story18	176.8	117.9	78.6	49.1	Story19	0.001213	0.00194	0.002908
	Story19	190.1	126.7	84.5	52.8	Story20	0.001156	0.001848	0.002771
	Story20	202.7	135.2	90.1	56.4	Story21	0.001035	0.001655	0.002481
	Story21	214.1	142.7	95.2	59.5	Story22	0.000885	0.001416	0.002123
	Story22	223.8	149.2	99.5	62.2	Story23	0.00072	0.00115	0.001724
İ	Story23	231.6	154.4	103	64.4	Story24	0.000547	0.000874	0.00131
	Story24	237.6	158.4	105.6	66	Story25	0.000393	0.000628	0.000941
Ī	Story25	241.9	161.3	107.6	67.2				-
26 22 22 22 21 11 12 12 12 12 12 12 12 12			d parameter		ne IV ne III	26 - 24 - 22 - 22 - 20 - 18 - 1 - 16 - 1 - 12 - 1 - 10 - 10 - 10 - 10 - 10 -			

C. Over-turning Moment:

Story10

B. Storey Drift: Storey Drifts of the structure along X-Direction for Load

125

STOREY DISPLACEMENT along X-Direction

150 175 200

Over-turning Moment values of the structure along X-axis (M_x) for the Load case 1.2(DL+LL+Ex) Max

2242091

3569989

5340521

7996318

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040

DRIFT along X-Direction

0.003042

0.00304

0.003526

0.00366

0.003592

0.003464

0.003307

0.003146

0.003075

0.003721

0.003962

0.003856

0.003691

0.003183

0.002586

0.001964

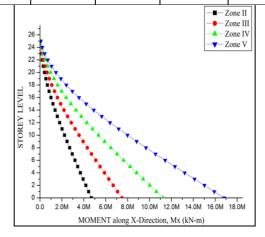
0.001411 ■— Zone II ●— Zone III △— Zone IV ▼— Zone V

case 1.2(DL+I	ase 1.2(DL+LL+Ex) Max					Zone 2	Zone 3	Zone 4	Zone 5
Story	Zone 2	Zone 3	Zone 4	Zone 5	Plinth	4690852	7490315	11222932	16821857
Plinth	0.00042	0.000671	0.001006	0.001509	Story1	4440140	7089176	10621224	15919297
Story1	0.000709	0.001134	0.001701	0.002551	Story2	4189902	6688538	10020054	15017327
Story2	0.000813	0.0013	0.00195	0.002925					
Story3	0.000843	0.001348	0.002023	0.003034	Story3	3939928	6288325	9419520	14116312
Story4	0.000856	0.001369	0.002053	0.00308	Story4	3690552	5889066	8820418	13217445
Story5	0.000861	0.001378	0.002067	0.0031	Story5	3442236	5491504	8223861	12322397
Story6	0.000862	0.00138	0.00207	0.003104					
Story7	0.000859	0.001375	0.002063	0.003094	Story6	3195577	5096594	7631282	11433315
Story8	0.000853	0.001365	0.002047	0.003071	Story7	2951306	4705502	7044431	10552825
ge 26					Story8	2710282	4319608	6465377	9684029
30 20	Index in C	osmos			Story9	2473502	3940503	5896505	8830508

Pag

Index in Cosmos

March 2022, Volume 12, ISSUE 1

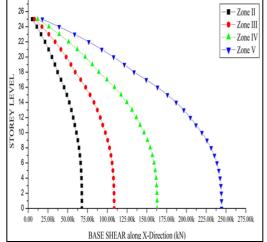


www.pragatipublication.com

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Story11	2017310	3210083	4800448	7185994
Story12	1797373	2859653	4276026	6400585
Story13	1584685	2520821	3769002	5641274
Story14	1380505	2195602	3282397	4912591
Story15	1186193	1886171	2819474	4219430
Story16	1003207	1594862	2383736	3567046
Story17	833109.8	1324175	1978928	2961058
Story18	677561.2	1076766	1609038	2407448
Story19	538618.9	855502	1278013	1911779
Story20	412229.1	654322.4	977113.4	1461300
Story21	299748.1	475396.8	709595	1060892
Story22	202601.5	321006.1	478879	715688.3
Story23	122284.4	193542.8	288554	431070.8
Story24	60361.59	95510.31	142375.3	212672.7
Story25	18467.37	29523.55	44265.12	66377.49



D. Base Shear:

Base shear values along X – axis for the Load case Ex 3

		\mathcal{E}			
	Storey	ZoneXII.	Zone 3	Zone 4	Zone 5
	Plinth	67903.78	108646	162969.1	244453.6
	Story1	67891.66	108626.7	162940	244410
	Story2	67819.83	108511.7	162767.6	244151.4
	Story3	67658.22	108253.2	162379.7	243569.6
	Story4	67370.92	107793.5	161690.2	242535.3
	Story5	66922	107075.2	160612.8	240919.2
	Story6	66275.58	106040.9	159061.4	238592.1
	Story7	65395.72	104633.2	156949.7	235424.6
	Story8	64246.52	102794.4	154191.7	231287.5
	Story9	62792.07	100467.3	150701	226051.5
	Story10	60996.46	97594.33	146391.5	219587.2
	Story11	58905.73	94249.18	141373.8	212060.6
Pag	seStony12	56942.27	91107.64	136661.5	204992.2
,	Story13	54637-93	87420.69 OSMOS	131131	196696.6
	Story14	51965.44	83144.71	124717.1	187075.6
	Story 1 3 1	1r488941332,	V 98250.0512	, 177354.1 ¹	176031.1

tory16	45406.94	72651.1	108976.6	163465
Story17	41466.38	66346.21	99519.31	149279
Story18	37160.32	59456.51	89184.77	133777.2
Story19	33760.53	54016.85	81025.27	121537.9
Story20	29993.45	47989.51	71984.27	107976.4
Story21	25840.24	41344.38	62016.57	93024.85
Story22	21282.07	34051.31	51076.96	76615.44
Story23	16300.1	26080.16	39120.24	58680.35
Story24	10875.5	17400.8	26101.2	39151.8
Story25	4990.818	7985.309	11977.96	17966.94

CONCLUSIONS

From the results obtained by the analysis of Irregular G+25 model, following conclusions are drawn.

- The plan configuration of the structure has major impact on the seismic response of the structure in terms of displacement, story drift, story shear etc...
- The structural performance of the building model is better in zone II when compared to the other three zones. That too, in soil Type I (i.e., Hard Soil) it performs well.
- It has been concluded that the Storey Overturning moment decreases with increase in the storey height.
- Greater the height of the structure (building), higher will be the Storey Displacement.
- 5) The Drift values increases along with the storey height to some extent and then decreases. In this case, The Storey Drift value of the building is more at storey 19 in all the zones. With the help of graph, we can also conclude that, as the plan configuration changes, the drift curve also changes its fashion even in the same structure.
- 6) The Torsion and Base shear values of the building decreases with increase in height of the structure.
- 7) The above stated Structural properties (i.e., Displacement, Storey Drift, Base shear, Over- turning Moment...) of the building differs more by about 72% in Zone V when compared to Zone II.
- 8) Whereas, the Axial shear force values are same in all the zones.

www.pragatipublication.com

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

REFERENCES

- [1] S.K.Duggal (2013), "Earthquake Resistant Design of Structures", Oxford University press.
- [2] Taranath B.S. (1988), "Structural Analysis and Design of Tall Buildings" McGraw-Hill Book Company.
- [3] P. Prashanth, S. Anshuman, R.K. Pandey, Herbert Arpan, "Comparison of design results of a Structure designed using STAAD and ETABS Software," INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING, Volume 2, No 3, 2012
- [4] Ravikumar C M, Babu Narayan K S, Sujith B V, Venkat Reddy D "Effect of Irregular Configurations on Seismic Vulnerability of RC Buildings" Architecture Research 2012, 2(3): 20-26
- [5] Rucha S. Banginwar, M. R. Vyawahare, P. O. Modani "Effect of Plans Configurations on the Seismic Behaviour of the Structure By Response Spectrum Method" International Journal of Engineering Research and Applications (IJERA) Vol. 2, Issue 3, May-Jun 2012, pp.1439-1443.
- [6] Guleria, Abhay. "Structural Analysis of a Multi-Storeyed Building Using ETABS for Different Plan Configurations." Vol. 3.Issue 5 (2014): 1481-484. International Journal of Engineering Research & Technology (IJERT).
- [7] Bureau of Indian Standards: IS: 1893(Part I): 2002, Criteria for Earthquake Resistant Design of Structures: Part 1 General provisions and Buildings (Fifth Revision), New Delhi, India.
- [8] Bureau of Indian Standards: IS: 875(Part 1)–1987, Dead Loads on Buildings and Structures (Second Revision), New Delhi, India.
- [9] Bureau of Indian Standards: IS: 875(Part 3)–1987, Wind Loads on Buildings and Structures (Second Revision), New Delhi, India.
- [10] ETABS 13.2.0, "Documentation and Training Manuals"